Prepare Yourself... The Tiger Will Be Unleashed Soon

Maria Lucia Barrén Estrada', Ryan Stansifer?, and Ramén Zatarain Cabada'

'Instituto Tecnolégico de Culiacin, Av. Juan de Dios Batiz s/n Col. Guadalupe, Culiacin, Sin.
80220 México Tel. 667-713 3804
mbarron‘u fit.edu, rzc777% hotmail.com .
2Florida Institute of Technology, 150 W. University Bivd. Mcibourne, FL, 32901 USA
ryan-cs.fit.cdu

Abstract. The Java programming language has been, for the last several years, in
the process 1o adding many features. The newest version of Java is called Tiger and
will include new features to simplify software development. The watchwords of the
Java 2 Standard Edition (J2SE) version § are “easy of development” and “easy to
use”. The most significant addition to the language is the ability to create and
manipulate generic types. Despite major changes the language syntax had to be
changed only slightly and the Java virtual machine remains the same, thus insuring
compatibility with cxisting code. Others features in Tiger allow developers lo
annotate programs and reducc the amount of code they need to write. The new
features of Java will have a major impact in the use of Java and in the curricula of
Computer Sciences and Informatics. In particular, Java’'s gencrics will put
paramctric polymorphism back into the toolkit of students, teachers, and
practicioners. In this paper, we describe several of the changes in Java and provide
cxamples illustrating their use.

Keywords: Java, generic types, typesafc enums Jforeach, programming, data
structures.

1 Introduction

Java [AG 98] is one of the most popular programming languages. The balance of
simplicity and power that Java offers allows developers to simplify the construction of
robust and maintainable programs. However there is room for improvement. Java has
been constantly evolving since it catapulted in the programming arena in 1995. After is
first release, nested classes were added, event handling in GUIs was revised, numerous
speciality APls were added, and the collection class hierarchy was designed. Many
changes to Java are requested by users through the Java Community Process. One of the
most requested features is some sor of parametric polymorphism (generics). A formal
document [JSRO14] outlines the proposal. With the next release of Java, Tiger, the

proposal becomes reality.

Adding parametric polymorphism to Java has been the focus of many researchers as well
[BCK+ 03, BOSW 98a, BOSW 98b, CS 98, MBL 97, and OW 97]. After many proposals

448 Maria L. Barrén Estrada, et al.

were analyzed, a new version of the language including this and other features g now
under review process. Java 1.5 is named Tiger, several beta versions have been releaseg
since last year; the latest version is beta 3, which is available for developers since July |9
2004. Sun plans to release the final version later this year. ’

Many universities all over the world have adopted Java as the programming language
to be taught in several courses of different curricula. The new features included in Jay,
1.5 will impact this process in several ways. Some of these additions will release the
programmer of writing repetitive code that could be automatically generated. Othey
features will support the “easy of development” theme providing enumerations,
autoboxing, enhanced for loops, and static import. All these changes are described in [JSR
201).

] In this paper we present a list of features that are part of the new version of Java, We
show some examples of code in the current version y contrast them with code in Tiger.
The paper is organized as follows: section 2 explains the benefits of static import, section
3 describes the automatic conversion of primitive types to they corresponding reference
types (wrapper classes), this process is known as autoboxing. Section 4 describes the new
form of for loop designed to iterate over collections. Section 5 explains the enumeration
facility provided in the language and its differences with respect to other languages. The
most important feature added in this version is presented in section 6, it contains three
subsections describing how to use generics, how to implement generics and the problems
associated to them. Metadata, a declarative way of programming using annotations is
shown in section 7. Section 8 shows an example of a procedure with a variable number of

arguments. API's to get formatted input/output are presented in section 9. Finally
conclusions are offered in section 10.

2 Static Import

In the current version of Java, class members defined as static can be imported by other
classes that want to use them but it is necessary to refer to them using fully qualified
names (ClassName.member or ClassName.member()). In other languages like Pascal or C,
imported members can be directly referred to without using qualifications.

Java 1.5 includes variants of the import statements to allow impontation of static members
(fields and methods) in the same way classes and interfaces can be imported.

Example of the two new import static declarations

import static TypeName.Identifier:
import static TypeName.*;

In the example shown above the first declaration imports into the current unit the specific
Identifier, which must be a static member of the class or interface named TypeNanze. The

second declaration should import into the current unit all the static members (fields and
methods) of the class or interface named TypeName.

Prepare Yourself... the Tiger will be Unleashed Soon 449

Next we show an example of the use of static im

. port declarations in Java 1.5 and contrast
it with the current version of Java,

Current version

import java.lang.Math;
y = Math.sqr(r) * Math.PI;

Tiger Java 1.5

import static java.lang.Math.*;
y = sqr(r) * PI;

3 Automatic Boxing and Unboxing

Frequently programmers need to wrap primitive types into objects. Java provides wrapper
classes that can be used by the programmer to convert primitive types into reference
types. However this is a process that could be automatically done by the compiler and it is
commonly known as boxing. Java 1.5 offers this feature facilitating the integration of
generic types into the language.

The rules for boxing are straightforward. A value of a primitive type is converted into its
corresponding reference type. Corresponding types are shown in table 1. An opposite

process, known as unboxing, converts a reference type into a value of its corresponding
primitive type.

Table 1. Correspondence between reference types and primitive

Primitive type boolcan |[byte [double |short |int long [float
Reference type Boolean | Bytc | Double | Short |Integer |Long | Float

An example of the use of automatic boxing and unboxing is presented in thc. code
fragment below. A code fragment with the same functionality using the actual version of
Java is presented before.

Current version. Wrapping primitive type into reference types

public static void main (String (] args) {
Stack x = new Stack();
x.push(new Integer(l17));. // wrap 17
Integer y = (Integer) x.pop();
int num = y.value(); // get value

450 Maria L. Barrén Esirada, et al.

Tiger Java 1.5. Using automatic boxing/unboxing with parameterized classes

public static void main(String args{]) {
Stack<Integer> x = new Stack<Integer>();

x.push(1l7); // boxing
Integer y = x.popl():

int num = y; // unboxing

}

4 Foreach

An iterator provides a mechanism to navigate sequentially through a collection of
elements. Using the current version of Java, boilerplate code is needed to iterate through a
collection defining explicitly an iterator. This is shown in the first code fragment below,
Tiger provides a new form of for loop commonly known as foreach loop. The foreach
loop reduces the need of boilerplate iteration code, and simplifies the code reducing the
chances of errors. The code presented in the right part of figure 4 is using a generic type to
define a type argument of a Collection received as argument. This code is based on a
similar example presented in [BG 03]. As we can appreciate iterating over the elements of
the collection is simpler shorter and safer in the code using Tiger than the code using the

current version. Both code fragments are shown below. The enhanced for loop can be
used to iterate through array elements also.

Current version. An example of iterating over a collection.

void cancelAllElements(Collection ¢) {

for(Iterator Ii = c.iterator(); i.hasNext() ;) (

TimerTask timer = (TimerTask) i.next():
timer.cancel();

}

Tiger Java).5. An example of foreach using generics and collections

void cancelAllElements(Collection<TimerTask> c) {
for(TimerTask timer : cC)
timer.cancel():

5 Typesafe Enumerated Types

Enumerations were widely known in Pascal and C/C++. This construct allows the
definition of names to help document and clarify code. Java didn’t have an enumeration

Prepare Yourself... the Tiger will be Unleashed Soon 451

construct and programmers were forced to workaround to create this pattern. This is not
an easy task it: type safety is required and many programmers fail to implement the correct
pattern. In his book [BO1] Bloch discuss the importance of implement a correct
enumeration but the amount of code needed increases the chances of errors. Tiger offers a
typesafe enum facility that combines power, performance and it is easy to use. Enums
have all the advantages of the typesafe enum patter described in [B 01). Enums are a
special kind of classes. They introduce a new keyword into the language. Its simplest
definition looks like a C/C++ enum declaration, but it doesn't have its disadvantages.
Figure 5 shows two examples of enum declarations.

Example of the typcsafe enumcration pattem.

public class City {
private final String name;
private Suit(String name) (this.name = name;)
public String toString() { return name;)}
public static final City MIAMI = new City(“Miami”);
public static final City ORLANDO = new City(“Orlando”):;
public static final City MELBOURNE = new
City(“Melbourne”);
}

Two examples of the type safe enumecration facility provided in Tiger.

public enum City { Miami, Orlando, Melbourne;)}
public enum Ticket {
Plateau(l), General(5), Number{(10), VIP(100);
Ticket (int value) { this.value = value; }
private final int value;
public int value() (return value;]}

}

Class modifiers in enum declarations contain restrictions. Some of them are: all enum
declarations are implicitly final and can not be abstract unless they contain
constant-specific class bodies for every constant, and members of enum classes are
implicitly static.

6 Generic Types

The absence of generics in Java forces the programmer to use subtype polymorphism to
workaround writing code with cast operations that could fail at runtime. Tiger provides
generics enhancing the expressiveness of the language and improving safety because more
errors can be detected at compile time. A detailed description of generics can be found in

452 Marla L. Barron Estrada, e, al.

[B 04). Generic types in Java are not like templates in C++. They are compiled once and

for all, they are type checked at compile time and the i
. . y are translated int
piece of code. © @ homogenous

6.1 Generic Libraries

Generic types are widely used in the Collections API. In Tiger, collection types like Lig
or ArrayList, are part of the Collection API and can be parameterized by a type to specify

the type of elements the collection will contain. An example of the List class is presented
next in both version.

Current version

List xs = new LinkedList();

xs.add (new Integer(0)): // wrapping needed
Integer x = (Integer) xs.iterator().next(); // cast needed

Example of an instantiation of a generic class in Tiger Java 1.5

List<Integer> xs = new LinkedList<Integer>();
xs.add (0); // automatic boxing
Integer x = Xs.iterator().next(); // no cast

6.2 Implementing Generic Types

It is easy to define generic classes and interfaces. A generic class definition contains a list
of type parameters afier the class identifier. The code fragment below shows an example

of a generic class with two type parameters. The main function of this code fragment
shows an example of how instantiate and use generic classes.

A gencric class declaration and instantiation.

public class Pair<T,U> {
private T first;
private U second;

public Pair(T £, U s) {
first = f;
second = s;

}

T getfirst () { return first; }
U getsecond() { return second; }
String toString{() {..}

Prepare Yourself... the Tiger will be Unleashed Soon 453

public static void main(String args(]) {
Pair<Integer, String> x = new Pair<Integer, String>
(1, ”Aaron”);

List<String> 1 = new List<String>();

int tot = x.getfirst() + 1;
l.add(x.getsecond()):;

}

6.3 Problems with generics

The translation approach used for generic classes requires that the type parameters must
be reference types. Primitive types cannot be used to instantiate gencric classes or
interfaces. Tiger provides a feature to ameliorate this problem, automatic boxing and
unboxing of primitive types. F-bounded polymorphism is used to define constrained type
parameters but it cannot be combined smoothly with inheritance in the presence of binary
methods as noted in [BS 03]).

7 Metadata

This feature allows annotating classes, interfaces, fields, and methods as having
particular attributes. The current version of Java has a limited implementation of metadata
using tags. The new version of Java contains six built-in annotations and users can define
custom made annotations to decorate their types controlling their availability. With this
new feature developers are going to avoid writing boilerplate code that may be
automatically generated and updated by tools maintaining all the information is the source
file.

7.1 Built-in annotations

The built-in annotations available in the new version of Java are:
a) java.lang.Overrides - indicates that a method declaration in a class intent to override a
method form its superclas.
b) java.lang.annotation.Documented - indicates that javadoc documents the annotated
element. It can be ignored by the tool.
c) java.lang.annotation.Deprecated - The java compiler can wams the user if he/she uses

the annotated element.
d) java.lang.annotation.Inherited - A class decorated with an annotation that contains the

annotation Inherit, will inherit the annotation to all derived classes.

454 Maria L. Barrén Estrada, et. al.

e) java.lang.annotation.Retention - used to determine the annotation availability.

f) java.lang.annotation.Target -indicates to which kind of element (class, method, of
field) the annotation is applicable.

An example of an annotation is shown in the code fragment below.
Current version

public interface PingIF extends Remote {

public void ping() throws RemoteException;
) .

public class Ping implements PingIF{
public void ping() { ..}
}

An example of metadata annotations using Tiger Java 15

public class Ping {

public @Remote void ping() (..}
}

8 Variable Arguments

In the actual version of Java, the number of parameters in a method is fixed. Generally
when a method needs an arbitrary number of parameters, it uses an array to store all the
arguments. The new version of Java allows defining methods with a variable number of

arguments without using arrays to store them. The code fragments below show an
example of this in both the current version and Tiger.

Current version

Object [] arguments = ({
new Integer(7),
new Date(),

“ a disturbance in the force”

)

String result = MessageFormat.format (

“At {1l,time} on {1l,date}, there was {2} on planet” +
“{0,number, integer}.”, arguments) ;

456 Maria L. Barrén Estrada, et. al.

reused without recompilation. In this regard the big problem was with the collection
classes. The new generic collection classes are translated in a way that produces the same
Java bytecode as the old (non-generic) collection classes. This is not without its own
drawbacks, however.

The collections classes: lists, sets, dictionaries, and so on, are by their Nature
polymorphic. With generics in Java it will be possible to program these data structures
naturally without attention to the type of the elements. This should be a great help in the
instruction of data structures using the Java programming language.

Automatic boxing and unboxing also contributes to a more natural view of data
structures by erasing the difference between, say, stacks of integers and stacks of strings,

Input and ouput has been greatly improved. Although quite logically designed, I/0 has
been cumbersome in Java. It as been the cause of much frustration to developers,
students, and instructors alike. The new 1/0 API with it C style formatted output will
make common tasks like printing numbers in columns simple again.

References

[AG 98] Ken Amold and James Gosling. The Java™ Programming Language.
Addison Wesley. 1998

(B 01} Joshua Bloch. Effective Java™ Addison Wesley. 2001.

[B 04] Gilad Bracha. Generics in the Java Programming Language. March 9, 2004.
Available online at hitp://java.sun.com/j2se/ 1.5.0/lang htmnl

[BCK+ 03] Gilad Bracha, Norman Cohen, Christian Kemper, Martin Odersky, David
Stoutamire, Kresten Thorup, and Philip Wadler. Adding gencrics to the Java™
Programming Language: Public Draft Specification, Version 2.0. June 23, 2003.
Available online at htip:/java.sun.com
[BG 03] Joshua Bloch and Neal Gafler. Forthcoming Java™ Programming Language
Features. Presentation in JavaOne Conference. June 2003,

[BOSW 98a) Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. GJ:

Extending the Java Programming Language with type parameters. Manuscript, March
1998, revised August 1998.

[BOSW 98b] Gilad Bracha, Martin Odersky, David Stoutamire and Philip Wadler.
Making the future safe for the past: Adding Genericity to the Java Programming
Language (GJ) In Proceedings of OOPSILA '98, Conference on Object-Oriented

Programming, Systems, Languages and Applications, Vancouver, British Columbia,
Canada. October 1998,

[BS 03] Maria Lucia Barron Estrada and Ryan Stansifer. Inheritance, Genericity and

Binary Mcthods in Java. In Computacion y Sistemas, Volumen VI, numero 2. Mexico,
DF. December 2003,

[CS 98] Robert Cartwright and Guy L. Steele. Compatible Genericity with Run-Time
Types for the Java™ Programming Language. (NextGen) In Proceedings of OOPSLA

98, Conference on Object-Oriented Programming, Systems, Languages and Applications,
Vancouver, British Columbia, Canada. October 1998,

il 1o

456 Maria L. Barrén Estrada, et. al.

reused without recompilation. In this regard the big problem was with the collection
classes. The new generic collection classes are translated in a way that produces the same
Java bytecode as the old (non-generic) collection classes. This is not without its own
drawbacks, however.

The collections classes: lists, sets, dictionaries, and so on, are by their Nature
polymorphic. With generics in Java it will be possible to program these data structures
naturally without attention to the type of the elements. This should be a great help in the
instruction of data structures using the Java programming language.

Automatic boxing and unboxing also contributes to a more natural view of data
structures by erasing the difference between, say, stacks of integers and stacks of strings,

Input and ouput has been greatly improved. Although quite logically designed, I/0 has
been cumbersome in Java. It as been the cause of much frustration to developers,
students, and instructors alike. The new 1/0 API with it C style formatted output will
make common tasks like printing numbers in columns simple again.

References

[AG 98] Ken Amold and James Gosling. The Java™ Programming Language.
Addison Wesley. 1998

(B 01} Joshua Bloch. Effective Java™ Addison Wesley. 2001.

[B 04] Gilad Bracha. Generics in the Java Programming Language. March 9, 2004.
Available online at hitp://java.sun.com/j2se/ 1.5.0/lang htmnl

[BCK+ 03] Gilad Bracha, Norman Cohen, Christian Kemper, Martin Odersky, David
Stoutamire, Kresten Thorup, and Philip Wadler. Adding gencrics to the Java™
Programming Language: Public Draft Specification, Version 2.0. June 23, 2003.
Available online at htip:/java.sun.com
[BG 03] Joshua Bloch and Neal Gafler. Forthcoming Java™ Programming Language
Features. Presentation in JavaOne Conference. June 2003,

[BOSW 98a) Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. GJ:

Extending the Java Programming Language with type parameters. Manuscript, March
1998, revised August 1998.

[BOSW 98b] Gilad Bracha, Martin Odersky, David Stoutamire and Philip Wadler.
Making the future safe for the past: Adding Genericity to the Java Programming
Language (GJ) In Proceedings of OOPSILA '98, Conference on Object-Oriented

Programming, Systems, Languages and Applications, Vancouver, British Columbia,
Canada. October 1998,

[BS 03] Maria Lucia Barron Estrada and Ryan Stansifer. Inheritance, Genericity and

Binary Mcthods in Java. In Computacion y Sistemas, Volumen VI, numero 2. Mexico,
DF. December 2003,

[CS 98] Robert Cartwright and Guy L. Steele. Compatible Genericity with Run-Time
Types for the Java™ Programming Language. (NextGen) In Proceedings of OOPSLA

98, Conference on Object-Oriented Programming, Systems, Languages and Applications,
Vancouver, British Columbia, Canada. October 1998,

il 1o

10.

1.
12.

13.

14.

Prepare Yourself... the Tiger will be Unleashed Soon 457

[JSR 014] Sun Microsystems. Adding Generic Types to the Java™ Programming
Language. Java Specification Request JSR-000014, 1998. [Online] URL

http:/iwww.jcp.orp/en/ist/detail?id=14 Approved in 1999.

[JSR 176] J2SE™ 5.0 (Tiger) Relcase Contents http:/awww.jep.orp/en/jse/detail?id=176
[JSR 201] Sun Microsysiems. Extending the Java Programming Language with
Enumerations, Autoboxing. Enhanced for loops and Static Impon. Java Specification
Request JSR 201. Available online at hup://jep.org/en/jsr/detail7id =201
(MBL 97] Andrew C. Mycrs. Joscph A. Bank, and Barbara Liskov Paramcterized Types
for Java (Poly)). In Proceedings 24 ACM Symposium on Principles of Programming
Languages, pages 132-145, Paris, France, January 1997.

[OW 97] Manin Odersky, Philip Wadler. Pizza into Java: Translating theory into practice.
In Procecdings 24" ACM Symposium on Principles of Programming Languages, pages
146159, Paris, France, January 1997.

